ANÁLISIS AUTOMATIZADO DE LAS NEOPLASIAS DE CÉLULAS B MADURAS

CANCER RESEARCH CENTER IBSAL, UNIVERSITY & UNIVERSITY HOSPITAL OF SALAMANCA

6° Curso Práctico de Citometría de Flujo Valencia, 29 de septiembre de 2023

IS THERE A NEED FOR AUTOMATED FCM DATA ANALYSIS?

Why Data Bases are useful?

EuroFlow strategy in the diagnostic work-up of CLPD

The EuroFlow comprehensive approach

EuroFlow

LST - Lymphocytosis screening tube

Able to identify all the sample major populations of normal vs (expanded and/or aberrant) tumor cells:

Non-hematopoietic cells

T lymphocytes (T-cell subpopulations)

B lymphocytes (B-cell light chain restriction)

NK cells

Plasma cells

B-NHL panel backbone

EuroFlow

LST + BCLPD classification panel

	Pac Blue	Pac Orange	FITC	PE	PerCP- Cy5.5	PECy7	APC	APC-H7
1= LST	CD20 /CD4	CD45	sΙgλ /CD8	sIgK /CD56	CD5	CD19 /TCRγδ	CD3	CD38
2	CD20	CD45	CD23	<i>C</i> D10	СD79Ь	CD19	CD200	CD43
3	CD20	CD45	CD31	LAIR	CD11c	CD19	sIgM	CD81
4	CD20	CD45	CD103	CD95	CD22	CD19	CXCR5	CD49d
5R	CD20	CD45	CD62L	CD39	HLA-DR	CD19	CD27	

CD20/CD4/CD45/sIgl/sIgK/CD8/CD56/CD5/CD19/CD38/CD23/CD10/CD79b/CD200/CD43/CD31/LAI R1/CD11c/sIgM/CD81/CD103/CD95/CD22/CXCR5/CD49d/CD62L/CD39/HLA-DR/CD19/CD27

Responsible scientist: Sebastian Bottcher

CONSTRUCTION OF EUROFLOW LEUKEMIA/ LYMPHOMA IMMUNOPHENOTYPING ANTIBODY PANEL

FCM DATA OVERLAYED ON REFERENCE DATA BASES PLUS INTERPRETATION

- To evaluate an antibody panel and identify the most informative markers

- To (automatically) gate cell populations in a data file

- To classify a disease into a given lineage, maturation stage and diagnostic category

MCL vs CLL: PCA of total immunophenotype

APS 1

Principal component 1 \rightarrow

Responsible scientist: Sebastian Bottcher

MCL vs CLL: PCA of total immunophenotype

14.09

14.06

13.39

8.60

6.43

Responsible scientist: Sebastian Bottcher

BCLPD classification panel: modular design

Responsible scientist: Sebastian Bottcher

BCLPD classification panel: modular design

Responsible scientist: Sebastian Bottcher

BCLPD classification panel: modular design

Tubes 1 (LST) and 2 only: resolve 100% of CLL and 85% MCL cases

Tubes 1 (LST) only: resolves 48% of CLL and 21% MCL cases

Responsible scientist: Sebastian Bottcher EuroFlow

GATING IN THE LST TUBE: 35 different cell subsets x mean of 3 gates (n=105 gates)

FCM DATA OVERLAYED ON REFERENCE DATA BASES PLUS INTERPRETATION

- To evaluate an antibody panel and identify the most informative markers

- To (automatically) gate cell populations in a data file

- To classify a disease into a given lineage, maturation stage and diagnostic category

- Gating groups of events for identification (labeling) of cell populations -Automated gating algorithms.

BOOLEAN GATING STRATEGY

Prepared by A.Salvador

GATING IN THE LST TUBE: 35 different cell populations x mean of 3 gates (105 gates)

GATING IN THE LST TUBE: 35 different cell populations x mean of 3 gates (105 gates)

Automated identification of cell populations

Basic principles

Responsible scientists: Rafael Fluxa, Juan Hernandez, Quentin Lecrevisse

Automated identification of cell populations

Basic principles

Responsible scientists: Rafael Fluxa, Juan Hernandez, Quentin Lecrevisse

EUROFLOW LST DATABASE CONSTRUCTION STEPS

Key steps

1. Selection / Staining and acquisition of normal-

reactive bone marrow samples with LST

2. Inspection of technical quality

3. Analysis and identification of all cell populations in the sample

- 4. Samples incorporation to the data base
- 5. Exclusion of biological and/or technical outliers
- 6. Prospective validation

LST samples selected (n=119)QC check for technical and biologic variables (n=73) Samples included in the final data base (n=46)

Flores-Montero, Journal of Immunological Methods 2019

EUROFLOW LST DATABASE CONSTRUCTION STEPS

Key steps

- 1. Selection / Staining and acquisition of normalreactive blood samples with LST
- 2. Inspection of technical quality
- 3. Manual gating and identification of all cell populations in the sample.
- 4. Samples incorporation to the data base
- 5. Exclusion of biological and/or technical outliers
- 6. Prospective validation

Flores-Montero, Journal of Immunological Methods 2019

EUROFLOW LST DATABASE CONSTRUCTION STEPS

Key steps

1. Selection / Staining and acquisition of normal-

reactive blood samples with LST

- 2. Inspection of technical quality
- 3. Manual gating and identification of all cell populations in the sample.
- 4. Samples merged & incorporated to the database
- 5. Exclusion of biological and/or technical outliers
- 6. Prospective validation

Flores-Montero, Journal of Immunological Methods 2019

Automated gating: classification phase Classification algorithm

EuroFlow

AUTOMATED IDENTIFICATION OF CELL POPULATIONS AGAINST THE LST DATABASE

Library containing all 2815 CA possible comparisons

EuroFlow

Read file(s)

Data base selection

Automated identification of cell populations

Basic principles

Responsible scientists: Rafael Fluxa, Juan Hernandez, Quentin Lecrevisse EuroFlow

Automated gating output with events to "check"

CLASSIFICATION OF EVENTS INTO CELL POPULATIONS

*Limit of detection established at 40 cellular events

All events gated after labelling events in "check"

Final classification into a disease category

Final classification into a disease category

FCM DATA ANALYSIS IN CLINICAL LABS Targets per data file

-Number of each cell population

- Normal
- Increased
- Decreased
- Imbalanced
- Immunophenotype of cell populations
 - Normal
 - Reactive vs clonal
 - Aberrant (what tumor type)

Validation of the EuroFlow LST tube for EuroFlow detection of mature lymphoid tumor cells

van Dongen et al, Leukemia 2012; Flores-Montero et al J Immunol Meth, 2019

Reference data base interpretation vs final WHO diagnosis

Criteria for abnormal lymphoid cells	N cases (%)
Aberrant immunophenotypic profile (n=227)	227/233 (97.4%)
Altered number /distribution (n=172)	172/233 (73.8%)
Total (n=233)	233/233 (100%)

% of Tumor B-cells identified by the Expert

Upgraded (8C / 13-markers) LST vs Classic LST + TRBC1 staining tube (n=18)

	Classic LST	TRBC1 tube % cells (min - max)	Upgraded LST	
CD4+	50.1% (11.6 - 74.5)	51.3% (10.9 - 74.7)	50.3% (11.3 - 74.9)	
TRBC1+		40.3% (35.5 - 52.5)	40.4% (34.6 - 51.6)	CD3_APC-A:_APC-A
TRBC1-		59.8% (47.5 - 64.5)	59.7% (48.4 - 65.4)	\square \square \square
CD8+	43.2% (20.9 - 88.3)	41.5% (20.4 - 88.9)	43% (20.8 - 88.5)	
TRBC1+		38.9% (1 - 69.1)	39.4% (1 - 70.8)	CB1_FITC-A:_FITC-A
TRBC1-		61.2% (30.9 - 99)	60.7% (29.2 - 99)	T CD4⁺ T CD8⁺ T TCRγδ⁺
CD4-/CD8-	4.3% (0.2 - 10.6)	4.5% (0 - 11)	4.2% (0.2 - 10.1)	T CD4-/CD8-/TCRγδ- Clonal T-cells

Automated gaiting & identification flow chart

FCM DATA OVERLAYED ON REFERENCE DATA BASES PLUS INTERPRETATION

- To evaluate an antibody panel and identify the most informative markers
 - To (automatically) gate cell populations in a data file
 - To classify cell populations in a sample into a potential diagnostic category

FCM DATA ANALYSIS IN CLINICAL LABS Targets per data file

- Number of each cell population
 - Normal
 - Increased
 - Decreased
 - Imbalanced
- Immunophenotype of cell populations
 - Normal
 - Reactive vs clonal
 - Aberrant (what tumor type)

BIOLOGICAL (+CLINICAL) INTERPRETATION

EuroFlow LST+ BCLPD panel database marker map per WHO 2016 diagnostic category

EuroFlow LST + BCLPD database construction and validation EuroFlow

Bottcher et al, Leukemia 2021 (under revision)

Classification Algorithms (2006-2023)

CA	Canonical Analysis, based on Canonical Variate Analysis (CVA)
SVM	Based on the Support Vector Machine
APS	<i>Automated Population Separator</i> , based on the classical Principal Component Analysis (PCA) algorithm
CA-vSD	CA with v ariable S tandard D eviation Delimitation
NAPS	N eighborhood A utomated P opulation S eparator (NAPS), based on Neighbourhood Component Analysis (NCA)

Although based on classical algorithms, all these approaches have been specifically developed to our applications

Overall, each method could in principle provide 4 classification outcomes vs the gold standard (WHO classification) compatible with:

- 1) A single correct diagnostic entity;
- 2) Multiple possible diagnoses including the correct one;
- 3) A misclassification and
- 4) Unclassifiable

HCL: 1 X 1 DIFFERENTIAL DIAGNOSIS

New algorithms for the diagnostic classification of B-cell chronic lymphoproliferative disorders

BCLPD: Diagnostic classification of individual cases vs a reference data base

BCLPD: Diagnostic classification of individual cases

BCLPD: Performance of different algorithms for the diagnostic classification of individual cases

	CA	SVM	APS	CA-vSD	NAPS
Correct diagnosis	90.6%	86.8%	86.0%	53.2%	80.4%
Misclassified	9.1%	11.9%	11.4%	7.3%	16.8%
Not classified	0.3%	1.3%	2.6%	39.5%	2.8%
% of single diagnoses	44.5%	42.3%	49.0%	58.7%	76.5%
Summarizing Score (CorrInd)	76.5	76.6	75.2	75.6	81.5

Best ____ Worst

BCLPD: Performance of different algorithms for the diagnostic classification of individual cases

Confusion matrix for NAPS and CA-vSD (659 BCLPD test cases)

	Correctness	Not-classified	Misclassified	NAPS ↓
Correctness	381	162	6	549 (83.3%)
Not classified	2	15	1	18 (2.7%)
Misclassified	5	67	20	92 (14%)
CA-vSD →	388 (58.9%)	244 (37%)	27 (4.1%)	659

			Class	ification algo	orithm	
WHO Diagnosis	Predicted diagnosis	СА	SVM	APS	CA-vSD	NAPS
BL	Correct diagnosis	83.2%	80.6%	77.7%	50.3%	73.5%
(- 20)	Misclassified	16.8%	15.8%	15.2%	14.0%	23.0%
(n=28)	Not classified		3.6%	7.1%	35.7%	3.6%
CD10- DLBCL	Correct diagnosis	83.3%	72.1%	76.4%	23.8%	72.1%
(Misclassified	16.7%	25.9%	19.8%	8.9%	24.0%
(n=52)	Not classified		1.9%	3.8%	67.3%	3.8%
CD10+ DLBCL	Correct diagnosis	87.4%	90.5%	79.9%	35.0%	69.8%
(- 53)	Misclassified	12.6%	9.5%	18.2%	9.2%	28.3%
(n=52)	Not classified			1.9%	55.8%	1.9%
CLL	Correct diagnosis	98.6%	98.6%	97.9%	90.4%	97.9%
	Misclassified	0.7%	0.7%	0.8%	0.7%	0.7%
(n=145)	Not classified	0.7%	0.7%	1.4%	9.0%	1.4%
FL	Correct diagnosis	96.6%	93.1%	92.2%	38.2%	88.6%
	Misclassified	3.4%	6.1%	6.3%	0.9%	9.0%
(n=128)	Not classified		0.8%	1.6%	60.9%	2.3%
HCL	Correct diagnosis	94.1%	95.7%	96.6%	91.4%	96.6%
	Misclassified	4.1%	2.6%	1.7%	1.7%	1.7%
(n=58)	Not classified	1.7%	1.7%	1.7%	6.9%	1.7%
I PI	Correct diagnosis	96.1%	86.5%	91.8%	47.1%	77.6%
	Misclassified	3.9%	12.1%	6.8%	4.3%	12.9%
(n=74)	Not clasified		1.4%	1.4%	48.6%	9.5%
MCL	Correct diagnosis	98.6%	97.2%	97.2%	78.7%	95.2%
	Misclassified	1.4%	1.5%	1.4%	1.3%	3.4%
(n=75)	Not classified		1.3%	1.3%	20.0%	1.3%
MZL	Correct diagnosis	78.2%	66.8%	67.9%	37.5%	51.4%
	Misclassified	21.8%	33.2%	32.1%	11.5%	48.6%
(n=47)	Not classified				51.1%	
Total	Correct diagnosis	90.6%	86.8%	86.0%	53.2%	80.4%
	Misclassified	9.1%	11.9%	11.4%	7.3%	16.8%
(n=659)	Not classified	0.3%	1.3%	2.6%	39.5%	2.8%

Efficiency of EuroFlow LST+BCLPD panel and databases for classification of BCLPD vs WHO 2016

	WHO diagnosis	n			Algori	thm-bas	sed flo	w cytom	etric dia	agnosis						
			BL	CD10 ⁻ DLBCL	CD10 ⁺ DLBCL	CLL	FL	HCL	LPL	MCL	MZL	Not classi- fied	Sensi- tivity	Speci- ficity	PPV	NPV
	BL	13	10	0	0	0	0	0	0	0	0	3	77%	99%	67%	99%
	CD10 ⁻ DLBCL	31	0	3	0	0	0	0	0	0	4	24	10%	99%	33%	94%
2	CD10 ⁺ DLBCL	33	5	0	6	0	2	0	0	0	0	20	18%	99%	55%	94%
0	CLL	125	0	0	0	116	0	0	0	0	0	9	93%	100%	99%	98%
Ξ	FL	109	0	1	5	0	35	0	2	0	0	66	32%	99%	95%	84%
	HCL	38	0	0	0	0	0	34	0	0	0	4	89%	100%	97%	99%
	LPL	54	0	2	0	0	0	0	22	2	1	27	41%	99%	88%	93%
	MCL	56	0	0	0	0	0	0	0	42	0	14	75%	99%	93%	97%
	MZL	27	0	3	0	1	0	1	1	1	10	10	37%	99%	67%	96%
	BL	13	8	0	0	0	0	0	0	0	0	5	62%	99%	62%	99%
	CD10 ⁻ DLBCL	31	0	2	0	0	0	1	0	0	1	27	6%	100%	50%	94%
2	CD10 ⁺ DLBCL	33	3	0	7	0	1	1	0	0	0	21	21%	99%	54%	95%
⊢ +	CLL	125	0	0	0	111	0	0	0	0	1	13	89%	100%	99%	96%
4	FL	109	2	0	5	0	37	0	0	0	0	65	34%	100%	97%	84%
	HCL	38	0	0	0	0	0	25	0	0	0	13	66%	100%	93%	97%
	LPL	54	0	0	0	0	0	0	6	1	3	44	11%	100%	75%	90%
	MCL	56	0	0	1	0	0	0	1	26	0	28	46%	100%	93%	93%
	MZL	27	0	2	0	1	0	0	1	1	4	18	15%	99%	44%	95%

Bottcher et al, Blood Adv 2022

EuroFlow LST+BCLPD panel and databases for classification of BCLPD vs WHO 2016: diagnostic algorithm

Efficiency of EuroFlow LST+BCLPD panel and databases for classification of BCLPD vs WHO 2016: CLL as an example

Efficiency of EuroFlow LST+BCLPD panel and databases for classification of BCLPD vs WHO 2016: MCL as an example

FROM THE LAB TO THE CLINICAL SIDE

- Graphics are useful for expert visualization of complex data but ...

- Graphics have to be translated into common (medical) language (numbers and words)

REPORT

- Numbers:
 - Counts per cell population
 - (age-matched) reference ranges
 - Quality of sample (hemodilution) and analysis (LOD, LOQ)
- -Words / Text:
 - Marker expression levels 2SD (normal) vs 3SD (low-high) vs
 4SD (very low-very high)
 - Compatible with diagnosis A (probability >95%)

Automated reporting

CELLULARITY (estimated based on total nucleated cells analyzed)

Reference age range; ≥ 50 years

Cell concentration in the sample: 15600 cells/µl.

		5 5 7
Population	Frequency (%) Reference (%)	Cells/µl Reference (cells/µl)
Lymphocytes	9.4 (27.4 - 47.8)	1465 (1784 - 3902)
T cells	7.1 (17.7 - 40.4)	1108 (1249 - 3019)
CD4+CD8-	4.5 (10.4 - 25.6)	694 (721 - 1753)
CD8+CD4-	2.1 (2.9 - 19.8)	322 (202 - 1564)
CD4-CD8-/dim	0.59 (0.032 - 2.7)	91.3 (2.2 - 166)
TCRgd+	0.41 (0.099 - 2.7)	64.5 (6 - 166)
TCRgd-	0.17 (0.032 - 0.29)	26.8 (2.2 - 20.8)
NK cells	1.2 (1.9 - 8.7)	187 (153 - 740)
Plasma cells	1.1 (0.002 - 0.19)	170 (0.14 - 16)
Eosinophils	0.12 (0.03 - 4.3)	18.9 (1.6 - 297)
Neutrophils	79.1 (37.9 - 60.5)	12339 (1990 - 4881)
Monocytes	6.9 (5.7 - 12.9)	1084 (287 - 896)

Total Abnormal/Expanded cells	4.4 -	694
Abnormal/Expanded B cells	4.4 -	694

Absent populations: Mature B cells, Mature SIg Kappa, Mature SIg Lambda

Sample with 22.9 % of debris.

The reference values displayed are calculated according to: Percentile (5-95).

IMMUNOPHENOTYPIC DESCRIPTION OF ABNORMAL/EXPANDED CELLS

ABNORMAL/EXPANDED B CELLS IMMUNOPHENOTYPE

FSCloSSChormalCD4/CD20⁺⁺(98.8%) CD45^{o/+}(96.7%) CD5⁻CD19/TCRgd^{+/++}(82.3%) CD38⁻ slglambda⁺

lo: low; hi: high.

Database normal cells have been used for the automated immunophenotypic description of the abnormal cells.

COMMENT

Peripheral blood sample with leukocytosis, neutrophilia and monocytosis. The absolute count of eosinophils and lymphocytes is normal.

Decreased number and/or proportion of T cells, CD4+CD8-, CD8+CD4- and NK cells detected. The proportion and/or absolute number of TCRgd- and B cells is increased.

In the analyzed peripheral blood, there are no alterations in the relative or absolute distribution of the lymphoid populations: CD4-CD8-/dim and TCRgd+.

The CD4/CD8 ratio (2.2) is normal.

In the analyzed sample, an abnormal expanded B cell population (4.4%, 694 cells/ μ I) is detected with aberrant immunophenotype (FSC^{IO}CD45^{IO/+}(96.7%)) and with monoclonal expression of immunoglobulin (slglambda+). This is associated with the expansion of no abnormal circulating plasma cells (1.1%, 170 cells/ μ I). -

Add additional comment:

CONCLUSION

An abnormal expanded B cell population (4.4%) with aberrant immunophenotype detected. The characterization and classification of these cells are required.

Add additional conclusion:

FROM BIG DATA TO APPLIED KNOWLEDGE

FROM BIG DATA TO CLINICALLY USEFUL AUTOMATED ASSAYS

Automation of data analysis and interpretation goes beyond current data analysis procedures and approaches with an increased value and utility

Concluding remarks

- Flow cytometry is much more than data, but its future requires appropriate and maximized extraction and usage of information that data provide
 - Pictures are not enough
- Low quality data will lead to low quality clinical and research information and more limited clinical utility and knowledge
 - Standardization is mandatory

- New data analysis tools are needed for maximum benefit from data in the clinical and research settings
 - Automation is the way to go

Tools are required, but most importantly planning is needed

AKNOWLEDGEMENTS

EuroFlow is part of ESLHO a scientific working group of EHA (European Hematology Association)

Euroflow is an independent scientific consortium, which aims at innovation in flow cytometry for improving diagnostic patient care <u>www.euroflow.org</u>

MUCHAS GRACIAS

MZL/LPL and FL: 1 X 1 DIFFERENTIAL DIAGNOSIS

EuroFlow LST+ BCLPD panel database marker map per WHO 2022 diagnostic category

Bottcher et al, Blood Adv 2022

AVAILABLE DATA BASES (August 2022)

- L & L diagnostic panels:

- LST in blood
- LST in bone marrow
- ALOT in blood
- ALOT in bone marrow

- L & L MRD panels

- MM-MRD in bone marrow
- MM-CTPC in blood
- BCP-ALL MRD in bone marrow
- BCP-ALL MRD in blood

- L & L classification panels:

- ALOT (acute leukemias)
- LST (B-cell CLPD)
- BCLPD (B-cell CLPD)

- PID panels

- PIDOT in blood (reference ranges)

Internal EuroFlow tests:

- TCD4 cells in blood (ref. ranges)
- Cytotoxic T/NK in blood
- B-cells and PC in blood

- Under construction:

- PID IgH-isotype (ref. ranges)

EuroFlow

- IMM-Innate cells/Mo/DC
- PNH